You are here

About the project

The collective self-organisation into complex spatial arrangements despite each agent having only local awareness is directly relevant to both biological morphogenesis, and to new paradigms of distributed technology such as robotic swarms and amorphous computing. Two levels of adaptation are either evident or required in these systems: (1) As the whole system changes over time, individual agents find themselves in different local situations and must adapt and adjust their behavior accordingly, for example dealing with conflict resolution and/or cooperation with neighbours. (2) The swarm must also adapt to the outside world (or the world it is embedded in) in various ways depending on its task – for example, coping with damage, maintaining functionality under changing environmental conditions, or tracking objects. A fundamental challenge in this field is how to design the local control system of each agent, and the Swarm-Organ project will extensively explore a specific approach – namely the use of GRNs (gene regulatory networks) – as a potentially powerful control method for these systems. By focusing on GRNs we will develop a theoretical framework about distributed adaptive control, which will be equally informative to both natural biological morphogenesis, as well as next generation technologies in robotics and computation.